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I. INTRODUCTION 

One of the well-known paradoxes of infinity is the possibility that a 
competitive program is inefficient, such inefficiency being linked to over- 
accumulation of capital. Recognition of the serious implications of this 
fact has led to attempts to derive conditions that can isolate completely 
the set of efficient competitive programs. However, these conditions seem 
to depend on rather specific properties of the technology, and even among 
the simpler economic models there are basic qualitative differences in 
the criteria for characterizing completely the set of efficient competitive 
programs. Nevertheless, in order to gain a proper understanding of the 
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role of prices in guiding resource allocation over time in a decentralized 
or a centrally planned economy, it is essential that we have easily applicable 
criteria identifying the efficient competitive programs, at least for the 
more important models of intertemporal resource allocation. For the 
neoclassical model a fundamental result has recently been established 
by Cass [2], and his characterization has been extended to some ultisector 
open models [3] (see also [18]). No parallel study has yet been undertaken 
for closed multisector models, i.e., models in which all commodities are 
producible. The first purpose of this paper is to point out that for a large 
class of closed multisector models, a program is efficient if and only if 
it satisfies the intertemporal profit maximization condition relative to 
a nonnull sequence of nonnegative1 price vectors and the transversality 
condition that the values of inputs at these competitive prices goes to zero. 
It is immediately seen (in Sect. IV) that this characterization is quite 
different from the one obtained by Cass. The Cass criterion does not 
apply to our framework, just as our condition need not necessarily be 
satisfied by an efficient program in an open model. The class of models 
considered in this paper includes, in particular, those of Dorfman, 
Samuelson, and Solow [5] and McKenzie [15], in which the technology 
permits output substitution, as well as those of Samuelson and Solow [24], 
Morishima [19], and Nikaido [20], in which there is the possibility of 
input substitution. In view of the extensive use of such closed models in 
theoretical and empirical literature on growth and planning (see, for 
example. [4, 22. 26]), and the fact that our substitution assumptions are 
perhaps the most commonplace ones in economic theory, as reflected 
in the “usual” shapes of isoquants and production possibility curves, 
a unified and systematic presentation providing a complete characteri- 
zation of efficient programs in these models will hopefully be of some 
interest. 

It is known from [ 171 that a sufficient condition for efficiency is the 
existence of a sequence of strictly positive competitive prices relative to 
which the transversality condition holds. However, even in finite 
dimensions and with output substitution in the technology an efficient 
program need not have strictly positive competitive prices, and for infinite 
programs even when the prices happen to be strictly positive, the trans- 
versality condition does not necessarily hold in open models (recall the 
“golden rule” examples!). The important fact that with substitution 
possibilities in closed models, in which there is a strictly positive vector of 
von Neumann stocks, nonnegative competitive prices together with the 

1 An TN-vector x = (xi) is nonnegutke (written x 2 0) if xi 1 0 for all i. It is semi- 
positive (written s i 0) if x 2 0 and .Y i 0. It is sfrictly positire (written x > 0) if 
.P ._. 0 for all i. A sequence p = (p,) of m-vectors is nonnull if pt # 0 for at least one 1. 
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transversality condition are equivalent to efficiency, has not appeared 
in the literature, although the adequacy of the transversality condition in 
signalling capital overaccumulation has often been discussed (see [25, 
p. 2731). 

Assuming the strict positivity of competitive prices, Kurz 112, p. 2811 
and Kurz and Starrett [13, pp. 575, 5761 were able to show that the 
Malinvaud prices associated with an efficient program must necessarily 
satisfy the transversality condition when (a) the efficient program is 
“locally contractable” or (b) “productive.” However, one can show that 
an efficient program in a cZosed model can never satisfy the local contracta- 
bility assumption and, as Kurz himself recognized, the condition of 
productivity is too strong and is not implied by the substitution conditions 
that we shall consider. In our proof of the necessity of transversality in 
the closed model, we show the existence of the system of competitive 
prices supporting the efficient program such that the present value of 
any feasible program is finite and is maximized at the given efficient 
program. Note that present value maximization is stronger than the 
properties usually obtained in the more general framework of 
Malinvaud [17]. 

A second purpose of the paper is to apply our result to characterize 
Pareto optimal programs in a model with overlapping generations and to 
relate the problem of Pareto optimal distribution over time to the problem 
of efficient allocation of resources in this framework. Actually, following 
Samuelson [23], it is conventional to examine the distribution question in 
a “productionless” economy-where the agents have given endowments 
for exchange. We introduce production in a simple way, and in the 
extended model, our main result (under differentiability assumptions) is 
that a program is long-run Pareto optimal if and only if it is short-run 
Pareto optimal and efficient. Thus, roughly speaking, the problem of a 
“proper” distribution of goods is essentially a short-run feature and the 
only long-run problem-the only paradox of infinity-is one of inefficiency 
or capital overaccumulation. This proposition was first proved by Bose [I] 
for a neoclassical framework. Our exercise supplements his work and 
indicates that the proposition is valid, for a more general class of models. 

II. EFFICIENCY IN TECHNOLOGIES WITH OUTPUT SUBSTITUTION 

IIa. The Model 

The framework chosen here is the familiar closed model of production 
(see, for example, [20] or [19, Chap. VI], for detailed interpretation). 
Consider an economy in which there are m producible goods. The 
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technology does not change over time, and is described by a set F in 
the nonnegative orthant of Rzn’ -a pair (x, y) is in F if and only if it is 
possible to get the output vector y in period (t t 1) by using the input 
vector x in period t. The following assumptions on F are maintained 
throughout this paper: 

(A.l) F is a closed convex cone in the nonnegative orthant of R2” 
(continuity, convexity, and constant returns to scale). 

(A.2) (0, y) E 7 implies y = 0 (impossibility of free production). 

(A.3) There is (.U, j) E 7 with j > 0 (producibility). 

(A.4) (x, y) E F and x’ 3 x, 0 < y’ < y imply (x’, y’) E 9 wee 
disposal). 

As usual, for any (x, y) E F with x > 0, let X(X, y) = max{h: y 3 hx}. 
It is known (see [9, p. 3381) that under (A.l) through (A.4), there are 
(a, 5) E .Y, i > 0 (A is finite), and a price vector $ > 0 such that 

A = A(& j), j = /b, fi >, X(x, y) for all (x, y) E F with x > 0, 

jy < @x for all (x, y) 6 F. (2-l) 

We follow the usual convention of referring to j as a von Neumann price 
vector, LC as a vector of von Neumann stocks, and 1 as the von Neumann 
growth factor. In what follows, we shall assume without loss of generality, 
that i = 1, in order to simpltfy notation. Given any F satisfying the above 
assumptions, one simply takes the corresponding present value technology 
F = ((x, y): (x, iy) E F’}. F has the same structure as F’, and obviously 
has a maximal Von Neumann growth factor equal to one which is 
is achievable at any vector of input proportions at which i is achievable 
in F’. The interested reader is referred to the paper by Winter [27, 
p. 68-91 for details, and is invited to verify that the assumptions made 
below are not in conflict with this convention. Keeping in mind that h = 1, 
the next assumption can be stated simply as 

(A.5) There is some S > 0 such that (a, 2) E F-. 

In other words, we assume that there is a strictly positive vector of 
von Neumann stocks. Next, we define a feasible production program from 
x as a sequence (x, y) = (xt , y,,,) such that 

for all t > 1, 

for all t > 0. 
(2.2) 
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The consumption program c = (cJ generated by (x, y) is defined as: 

Cf = J’r --yt(>,O) for all t > 1. (2.3) 

We refer to (x. J’, c) as a feasible program from x, it being understood that 
(x, y) is a production program and c is the corresponding consumption 
program. A feasible program (x*. y*, c*) from x is efficient if there is no 
other feasible program (x, y, c) from x such that cI > ct* for all t and 
C~ > ct* for some t. A feasible program (x*, y*, c*) from x is competitive 
if there is a nonzero sequence (p,*) of nonnegative price vectors such that 
for all t > 0 one has 

0 = p,*,l J’;“-~l - /7,*Xt* > pTkl J‘ - Pt *.Y for all (x, y) in .Y. (2.4) 

In other words, the intertemporal profit maximization condition (2.4) 
is satisfied for all t. A competitive program (x*, y*, c*) satisfies the 
transversality condition if pt*x,* goes to zero as t goes to infinity. 

IIb. Technologies with Output Substitution 

We now introduce the concept of output substitution. Essentially it is 
required that if it is possible to produce y from x with yi > 0, then 
for any commodity j (# i) it is also possible to produce more than yj 
of it from x with a suitable reduction of yi, keeping the outputs of all 
other commodities unchanged. More formally, we have 

(A.6) Suppose that (x, y) E F with yi > 0 for some i. Given any 
j # i and any ai satisfying 0 < Si < yi, there exists & > 0 such that 
(x, y’) E .F where y/i = yi - ai, y” = yj + 6,) and y’li = y” for all 
k # i, j. 

Note that Sj in general depends on 6, as well as on the (x, y) under 
consideration. In Fig. 1, technologies (a) and (b) satisfy output substi- 
tution, while (c) does not. Using convexity, one can show that if (x, y) E Y, 
y >, y > 0, and yi > yi for some i, then by (A.5) there exists y’ with 
(x, y’) E Y and y’ > Y.~ Two examples of technologies with output 
substitution will be given. 

EXAMPLE 2.1. The polyhedral 9 defined as 5 = ((x, y): AZ <ix, 
Bz > y, z > O> where A is an n x n strictly positive matrix and B is the 
n x n identity matrix, satisfies (A.6). In general, however, if 7 is a poly- 
hedral convex cone output substitution may not be possible. 

2 Since the argument is used repeatedly in our proofs, we spell it out completely. 
Choose 0 < Si < y” - y”. For each j # i, there exists Sj > 0 such that (x, p - S,w, + 
6,0,) E T-, where W? is a vector with a one in the ith place, zeros elsewhere. By convexity, 
(x, y’) = (l,l(m - 1)) &1 (x, y  - 6,~~ + Spj) E f, and y’ > y. 
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(0) 4 Y, Y, 
(b) CC) 

FIGURE 1 

EXAMPLE 2.2. Let F be a nonnegative real-valued function on the 
nonnegative orthant of R2”-l such that it is continuously differentiable, 
concave, and homogeneous of degree one. Define 

y = {(x, y): 0 < y+” < F(x’,..., x1”, y1 ,... , ,,“‘-‘)). 

This is the well-known neoclassical transformation process of Dorfman, 
Samuelson, and Solow [5]. F( ) gives the maximum value of the output 
of the mth good given the values of its arguments. It will be assumed that 
aF/axi > 0 for i = I...., m and 8Fjayi < 0 for i = 1, 2 ,..., m - 1, and 
verification of the properties listed above is easy. 

While the requirement that the technology satisfies (A.6) may be strong, 
it is clear that (A.6) does not guarantee that for an efficient consumption 
program,3 the associated prices (p,) are strictly positive. The following 
theorem settles the question of relating efficient to competitive programs, 
when the technology satisfies (A.]) through (A.6): 

THEOREM 2.1. Under (A.l) through (A.6) afeasibleprogram C-x*, y*, c*) 
from x > 0 is eficient if and only if there exists a nonnull sequence (p,*) 
of nonnegative price vectors satisfying for all t = 1, 2,..., 

0 = Pt”_l.& - pt*xt* 3 Pt*+lY - pt*.y for all (x, v) E 7 (2.5) 

and 

l(iI?J pt*xt* = 0. (2.6) 

Proof. (Sufficiency). Suppose that (x*, y*, c*) is a feasible program 
from x such that there exists a nonnull sequence (p,*) of nonnegative 
price vectors satisfying Eqs. (2.5) and (2.6). We have to prove that 

3 Consider the example of Arrow (see [8, p. 88, Footnote 521) where f  = {(x, y) > 0: 
(Y’)~ + (J+)~ < [min(,+, x2)]‘}. However the (productive) efficient point y* = (1,O) 
produced from x* = (1, 1) can be supported only by the price system pI1 = 1 and 
p,z = 0. 

64211311-3 
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(A-*, y*, c*) is efficient. To this effect we start by showing that for any 
feasible program (x, y, c) from x one has 

f  pt*ct < f  pt*ct* = pO*x. (2.7) 
t--1 t=1 

Feasibility of (x, y, c) from x and Eq. (2.5) guarantee that for any T 3 1, 

s7.= $p* t Ct < po*x. (2.8) 
t=1 

Nonnegativity ofp, and ct implies that ST is a monotonically nondecreasing 
sequence which by (2.8) is bounded above. Hence, lim,,, S, exists and 
clearly 

lim ST G f pt*c, < pO*x. T-z (2.9) 
t=1 

For the particular program (x*, y*, c*) under consideration, one has 
c,‘=, pt*ct* - - p,,*x - pT*xT*. Using Eq. (2.6) and taking limits one has 
Eq. (2.7). 

Next, an important property of the competitive prices (p,*) satisfying 
Eq. (2.5) is noted: 

Pt 
* = 0 implies P,*,~ = 0 for all t > 0; hence pO* > 0; pl* > 0. (2.10) 

This conclusion does not depend on the transversality condition Eq. (2.6). 
To establish Eq. (2.10) note that if (a) pr* = 0 for some T > 1, and 
$+I > 0, Eq. (2.5) implies that ~:+~y - pT*x < 0 for all (x, y) E 5. 
By (A.3), &+I j > 0 = p=*X, a contradiction. If(b) pu* = 0 and pl* > 0, 
we have again by Eq. (2.5), pl*y - p,,*x < 0 for all (x, y) E ?. By (A.3) 
there is some p > 0 such that (x, By) E .Y. Hence, 0 < pl*/3j < pO*x = 0, 
a contradiction. By (a) and (b), pt* = 0 implies p& = 0 for all t > 0. 
Since the sequence (p,“) is not null, pO* > 0. Finally, since pO*x > 0, 
we have by Eq. (2.5), pl*yl* = p,,*x > 0 which means that pl* 3;- 0. 
completing the proof of Eq. (2.10). 

We now come to the proof of the result. Suppose that (x*. y*, c*) is 
not efficient. This means that there is a feasible program (a. 5, c”) from 
x such that 2, >, ct* for all t > 1 and Zt > ct* for some t, say t = t ’ 3 1. 
Either pZ: = 0 (Case I) or pz > 0 (Case II). We examine each case in turn 
for a contradiction. 

Case 1. Consider the last period 7, 1 < 7 < t’, for which pr* > 0. 

Since St, b Et, > c$ 3 0, (A.2) implies jjtrP1 > f,,-, > 0. Repeating 
this process, we finally get 4, > 0. Construct a feasible program (Z”, y”, c”“) 
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from x with Zi = 2, for t < T, Z: = & + P, , and c^; = 0 for t > 7. 
By (A.6) one can construct a feasible program (a’, jj’, c”‘) from x such that 
2,’ = c ‘-; for I + T and &,’ > c,*. Then using (2.10), CT=lpt*c”f’ = 
Cizlpt*ct’ > zzzlpt*ct* = zy=lpt*~I*, a contradiction of (2.7). 

Case II. Using (A.5) one can construct a program (a’, y’, F’) from 
x such that &’ = 2, for t # t’ and t,, > c: . Since pt > 0, this implies 
Zl Pt*G’ > ZLl pt*ct*, contradicting (2.7). Thus, the sufficiency part 
of the theorem is proved. 

(Necessity). An important consequence of (A.5) and (A.6) is that 

the von Neumann price vector $ is strictly positive. (2.11) 

Since $ is semipositive, for some j one has Bj > 0. Suppose that for some i, 
ji = 0. By (A.5) we have (a, 2) E F where a> 0. By applying (A.6) we 
have (2, y) E F where yi > 9, yj < @ and y1 = 9 for k F i, j. But 
jy - $a = $“y” - $i.9 > 0, contradicting the definition of $ (see Eq. (2.1) 
keeping in mind that i = 1). This establishes Eq. (2.11). 

Since by (A.5) (2, a) E F and F > 0, the following useful property is 
obvious: 

There exists 6 > 0 such that (a, 6~) E F where w = (I ,..., 1) E R”“. 
(2.12) 

Define G = {c = (cJ: ct = yt - xt for all t >, 1, x0 = x, (xt , ~‘~+r) E F, 
for all t > O}. Clearly, G contains all feasible consumption programs 
c = (c,), which satisfy these properties and the additional requirement 
that ct > 0 for all t. By Eq. (2.1) for any feasible consumption program 
c = (cJ one has for all T 3 0 

(2.13) 

Since fi > 0 (by Eq. 2.11) for any feasible consumption program c = (cJ 

II c II = f I Ct I G 4% where lctl = f ICtil, (2.14) 
t=1 i=l 

where a: > 0 is determined by j. 
Let 3 be the linear space of all sequences c = (c,) such that j[ c 11 is 

finite. An elementp of %*, the set of all continuous linear functionals on X 
can be represented4 as a sequence p = (p,) such that jlp /I* = sup, j pt I* 

* See [21, p. 641 or [6, p. 2891. 
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is finite, where 1 pt I * = maxi j JJ: /. Let 9 = (G n 3) - 9?+, where S+ 
is the set of all nonnegative sequences in 3%. 9 is easily seen to be a convex 
and closed (under pointwise convergence) subset of A?““.5 

Let y > 0 be such that yg < x. The program c7 = (0 ,..., 0, ~yw, 0 ,...) 
generated by pure accumulation at the von Neumann growth rate until 
T - 1, followed by the activity given in Eq. (2.12) to yield consumption 
in period 7 is feasible. Hence c7 is in 9 for all T 3 1. Clearly co = 0 is 
also in .9. 

Consider any c’ in 9? satisfying I/ c’ // < By, and define 8, = j cf’ I/By 
for t > 1 and 19~ = 1 - Cc, 8, > 0. Then c’ < x,“=, B,cT = C” and C” 
is contained in 9 by convexity and closedness under pointwise con- 
vergence. Hence c’ E .F and we have proved that F has an interior point. 

Consider the given efficient program (x*, y*, c*). It is easy to check 
that c* is in the boundary of 9. Hence by a separation argument there is6 
a nonzero continuous linear functional p* = (pt*) on !Z satisfying 

T m 

c pt*ct* 3 1 PtQt for all c = (c,) in 9. (2.15) 
t=1 t=1 

Since 9 contains all nonpositive sequences in 3, pi* must be nonnegative 
for each t. The proof will be completed by a demonstration that (2.15) 
implies the competitive condition Eq. (2.5). 

For T >, 1, define ct’ = c; = ct* for all t # 7, 7 + 1; c,’ = c,* - x, ; 
c: = c,* + .Y,*; c:+~ = c7*fl + y,,, ; cz+,, = c,*,, - Y,*,~ . One can verify 
that c’ results from augmenting production in T by (x, , y,,,) in Y, and 
c” results from reducing production to zero in T. Hence, c’ and c” are in 9, 
implying from (2.15) that 

PT*+1Y7+1 - PT*& G 0 for all (x, , y,+J E Y, Q- > 1, (2.16) 

P:+lY:+l ~ PT*-?* = 0 for 721. (2.17) 

Next consider T defined by c1 = yl*, Tt = 0 for t > 1. Clearly C: is in 9, 
and CyzIpt*Tt = pl*y,* < C&pt*c,*. On the other hand, summing 
the conditions (2.17), 

T-l 

0 = c (P,*,,Y,*,l - Pi*%*) = i pt*ct* + PT*xT* - Pl*Yl*. 
t=1 t=1 

6 One can easily adapt the arguments in 114, Lemma II, p. 451. 
6 See [lo, Theorem 14.21. 
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Hence, 

$+c pr*Xr* = pl*yl* - $+t i pj*Ct* = pl*yl* 
t=1 

- z pj*ct* d 0. 
(2.18) 

Since pT*xT* 2 0, this implies the transversality condition (2.6). 
Note that pl* > 0; otherwise, the argument following Eq. (2.10) would 

imply that the sequence p* is null for a contradiction. The supposition 
that there exists (x, y) E .F with pl*y > pl*y,* implies the program c’ 
in .F with cl’ = y, ct’ = 0 for t > 1 would contradict (2.15). Thus, 

z* =pl*yl* >pp,*y for all (x, y) E F. (2.19) 

Define the convex set K as 

K = {(x, z) E Rm x R: x 2 0, z < pl*y for any y such that (x, y) E F]. 

Notice that Eq. (2.19) implies that (x, z*) is a boundary point of K,.which 
clearly has interior points. Hence, there is some nonzero (p, A’) in R’” x R 
such that 

px + x/z* > px + h’z for all (x, z) in K. (2.20) 

Note that (a) h’ < 0 is impossible (choose (x, z) with z < I* on the right- 
hand side of Eq. (2.20); (b) p = 0 or pi > 0 is impossible (choose@‘x, /3’y,*) 
in F for a sufficiently large p’ to contradict Eq. (2.20)); (c) h’ = 0 is 
impossible since px 3 px for all x 3 0 and -p > 0, x > 0 will also 
contradict Eq. (2.20)). Hence, define p,,* = -(l/h’) p. Clearly po* > 0 
and for any (x, y) E F one hasp,*y - p,,*x = pl*y + (px/h’) = (l/X’) x 
p’p,*y + px] < (l/h’)[h’z* + px] = z* + (p/h’) x = p1*y,* - pO*x = 0. 
This completes the proof of Eq. (2.4) as well as the necessity part of the 
theorem. Q.E.D. 

Remark 1. It should be emphasized that the condition of present value 
maximization (Eq. 2.15) is a result of independent interest and does not 
follow from the well-known alternative approaches leading to the existence 
of Malinvaud prices- in a closed model such prices can be shown to exist 
under assumptions (A.l) through (A.4) see, e.g., [17] or [21]. 

Remark 2. Note that the sufficiency half of the theorem does not 
depend on (A.5) the strict positivity of von Neumann stocks. On the other 
hand, the necessity part of the theorem remains valid if (A.6) is replaced by 

(A.7) j > 0, i.e., there is a strictlypositive von Neumann price vector. 

It has been shown that the properties (A.5) and (A.7) follow from inde- 
composability and some other assumptions on Y (see e.g., [20, p. 205; 
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19, p. 1801. Actually, (A.7) holds whenever 0 is a maximal point of the 
closure Z of the convex cone 2 = {y - x: (x, y) E Y}. (See [20, 
pp. 35-361.) 

In view of the remarks above, and for a convenient organization of the 
proofs of the following sections (in which the assumption of output 
substitution is never made), it is useful to have the following precise 
statement to refer to: 

THEOREM 2.2. Under assumptions (A.l) through (A.5) and (A.7), if 
a feasible program (x*, y*, c*) from x > 0 is eficient, then there is a 
nonnull sequence (p,*) of nonnegative price vectors such that for all t > 0 

0 = P,*,lYL - /&*xt* > PLY - PtQ for all (x, y) E F (2.21) 

and 

I$p,*x,* = 0 (2.22) 

I]]. SOME FURTHER RESULTS 

IIla. Input Substitution 

In this section we present some results for models in which output 
substitution does not hold. In what follows, however, we do have to 
restrict (see Example 3.2 below) our analysis to efficient programs that are 
“interior” in the sense of using strictly positive input vectors at each date. 
Formally, a feasible probram (x, y, c) from x is an interior program if 
xt > 0 for all t. While the restriction to interior programs is somewhat 
ad hoc, it is weaker than the assumption of Cass [2] requiring a strictly 
positive lower bound on input levels. It is easy to check that zfan interior 
program is competitive, the associated price vectors (p,) must satisfy 
pt > 0 for all t,’ although it is not necessary that pt > 0.” 

First, instead of the assumption of output substitution we consider 
the following assumption of input substitution. 

(A.6’) Suppose that (x, y) E F and xi > 0 for some i. Given any 
j # i and ai > 0, there exists ai satisfying 0 < ai < xi such that (x’, y) E F 
where xii = xi-8si,x’~=x~+8,andx’~=xkforallk~i,j. 

The following theorem is easily proved: 

’ Let r be the first period for which pt = 0. From Eq. (2.10), t > 0. Then 
0 < ptmlxtel = pty, , for a contradiction. 

* The example of Arrow (Footnote 2) can be easily modified to show this. See, for 
example, [12, Diagram 1 and discussion, p. 2891. 
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THEOREM 3.1. Under (A.l) through (A.5), and (A.6’), and interior 
program (x*, y*, c*) from x > 0 is efficient if and only if there exists a 
nonnull sequence (p,*) of nonnegative price vectors such that for all 
t = 0, 1) 2 )...) 

0 = Plr,lY,*,l - pt*.rt* 2 PLY - pt*x for all (x, y) E F (3.1) 

liJt pt*.rt* = 0. (3.2) 

Proof. (Sufficiency). In view of Malinvaud’s theorem it is enough to 
show, by using (A.6’) that the sequence (p,*) satisfying (3.1) and (3.2) 
also satisfies pt* > 0 for all t. Suppose for some t and i, pti = 0. Since 
pt > 0, pd > 0 for some j # i and by (A.6’) there is (X, Y:+~) E F where 
.P -C .?$, L? > xFi and LP = xf” for k # i, j. Then p& ycl - pt*X4 > 0, 
contradicting Eq. (3.1). 

(Necessity). Use Theorem 2.2, since (A.6’) and 4 > 0 imply j > 0 
(using exactly the argument leading to the strict positivity of competitive 
prices in the sufficiency part). 

In the discussion above, the restriction to interior programs seems 
unavoidable. It is instructive to look at the following: 

EXAMPLE 3.1. Let F = {(x, y): yl, y2 < ((x1)“” + (x2)112)2/4, x 2 0, 
y > 0}, with x = (1, 1). This is a technology satisfying (A.5’) but not 
(A.5). The program y1 = (I, l), c1 = (1, 0), ct = (0,O) for all t >, 2 is seen 
to be inefficient, but satisfies (3.1) and (3.2) with respect to prices 
p0 = p1 = (1, 0) and pt = (0,O) for t 3 2. 

In connection with the application of our Theorem 3.1 to the “sausag: 
machine” technologies of Samuelson and Solow, it should be mentioned 
that the theorem can also be proved if (A.5’) is replaced by the condition 
of primitivity appearing in the related literature (see [19, p. 1791). This 
condition requires that for any x > 0 there is a finite sequence 
(.x~ , Y~+~) E F such that x,, = x, y, > 0. 

IIIb. The Polyhedral Case: A Counterexample 

The substitution conditions discussed above are typically not satisfied 
when the technology is a polyhedral convex cone (i.e., generated by a 
finite set of basic activities, (see, for example, [l 1, p. 791). The sufficiency 
half of Theorem 2.1 ceases to be valid, as can be seen from the simplest 
examples. It is natural to inquire whether by using the polyhedral structure 
one can sharpen the necessity half of that theorem to derive a sequence of 
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strictly positive competititve prices supporting an efficient program. 
Together with Malinvaud’s sufficiency theorem, this would then provide 
us with a complete characterization in terms of strictly positive competitive 
prices directly analogous to a standard result applicable to models with 
a jinite number of commodities and a technology that is a polyhedral 
convex cone (see [7, pp. 306-3081 or [20, pp. 186-1871). The remarks in 
[II, p. 111, Footnote 1] seem to suggest that this is indeed possible. 

We now give an example of an efficient program in a simple polyhedral 
model with three goods such that there is no sequence of strictly positive 
prices (pt*) that are competitive. Let Y = {(x, ~1) > 0, 4’ 3 CX], with 

Consider the program x = xt = (1, 1, 1), yt = (3, 3, 3) ct = (2, 2, 2) 
for t > 1. This program corresponds to production and consumption in 
von Neumann proportions, and is clearly efficient. Prices must satisfy 
the difference equation equation pEc,, = C-*pi*, which has the general 
solution 

Pt * = c,(g)t(l, 1, 0) + cz(#(O, 1, -1) + c&l, -1,O). 

The only solution allowing pt* 3 0 for all t is c1 > 0, cZ = cg = 0, 
implyingpF3 = 0, as was to be demonstrated. Note thatpt* = (#, ($)t, 0) 
satisfies the transversality condition as well as the competitive conditions. 

111~. Technological Change 

One can dispense with the assumption that the technology of the 
economy does not change over time. We shall sketch a possible generali- 
zation, referring the interested reader to the analysis of McFadden [14] 
for further details. Suppose that (the present value) technology 5 at 
date t (= 0, l,...) satisfies (A.1) through (A.4). The sufficiency part of 
Theorem 2.1 can be established by following the same arguments as 
above if Yt satisfies (A.6) for all t. To obtain an extension of the necessity 
part, the assumptions can be recast in the following manner. Let Y* be 
the smallest closed convex cone containing all the (present value) 
technologies 8 . The necessity part is obtained if, in addition to (A.1) 
through (A.4) holding for each Yt , one has 

(A.8) F* has a von Neumann growth rate equaZ to one; (0, y) in 
F* implies y = 0; and F* contains no sequence (x, , y,J with y, - x, 
having a nonnegative nonzero limit point. 
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(AX) There exists a positive scalar u such that for each t commodity 
vectors bl,..., bt can be found with (w, bl) in Y, , (bl, b2) in Fl ... (bt-l, bt) 
in &-1 and bj 3 uw where w = (l,..., 1). 

It follows from (A.8) that there is $ > 0 such that $( y - x) = 0 for all 
(x, y) in Y*. If technological change is neutral or biased towards balanced 
growth and there is a strictly positive von Neumann ray contained in all 
YY , then (A.8’) holds. 

IV. OPEN VERSUS CLOSED MODELS 

The results obtained in Sections II, Illa, and IIIc supplement that of 
Majumdar [16] in which the technology need not permit such substitution 
and yet efficiency can be completely characterized in terms of inter- 
temporal profit maximization and transversality conditions (see [16]). 
However, this characterization is quite different from that of Cass [2]. 
For the neoclassical model, or for a closed one-good model in which the 
technology is described by a production function f that is strictly concave 
in C2, the Cass criterion is applicable to interior programs satisfying 

g>&-tax>0 for all t, (4.1) 

where .xt is the input (per capita capital in the neoclassical case) at date t. 
The competitive prices (pi) associated with a program are defined by 
Pt = l/rt with nt = ntZif’(xJ, 7r - 1. Inefficiency of a program 
(x, y, c) is equivalent to finiteness of l&F+_ xr=, 7~~ . In view of the bounds 
(4.1) we easily see that ineficiency of (x, y, c) is equivalent to jniteness of 

$z i (l/P,x4- 
’ t=o 

(4.2) 

It is easy to figure out the relation between (4.2) and the transversality 
condition and the essential difference between the two criteria. It would, 
of course, be convenient if one could attribute the qualitative difference 
entirely to the presence or absence of a nonproducible commodity (like 
labor that sets an upper bound on all feasible per capita variables in the 
neoclassical model). That this is, strictly speaking, not the case will be 
clear from the following special example. 

EXAMPLE 4.1. The Leontief model of Gale [7, pp. 300-3011. The 
technology is 9 = {(I, x, y) > 0, Ay < x, ay < 1}, where I is the input 
of “labor” (the nonproducible good that is not consumed), A is an n x n 
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positive matrix and a is a strictly positive vector giving the input require- 
ments of producible goods and labor respectively. The condition for a 
program (I*, x*, y*, c*) to be competitive is that there exist nonnegative 
sequences (p,*), (We*) such that 

0 = p,*,, y,*,1 - pt*.ut* - wt*r,* 3 p& yt+1 - pt*xt - lvj*lf 

for (It , xt , y,,,) E F. This requires 

and <P,*,, - pt*A - w*4 Y& = 0. If yt* > 0, so that equality holds, 
the general solution of this difference equation is 

t-1 
* 

Pt = p,*Atwl + 2 l&aA’-‘. 
j=l 

An efficient program satisfies C:I: Ajc, = Ay, - A”y, with A”y, -+ 0. 
Clearly taking Wt * = 0 provides prices for which pt*yt + 0 is a criterion 
for efficiency.g 

V. AN APPLICATION TO THE PROBLEM OF 
CHARACTERIZING PARETO OPTIMALITY 

This section applies some of the previous results to provide a complete 
characterization of Pareto optimal distributions when consumers of over- 
lapping generations are introduced in the model. The questions of eficient 
allocation of resources in production and Pareto optimal distributions of 
goods among consumers are usually treated distinctly in the literature, 
the former following the lead of Malinvaud, and the latter following 
Samuelson’s pure exchange model. We consider both the questions in a 
multisector model with production. A study of Pareto optimality in which 
for each period there is a utility function ut defined on aggregate con- 
sumption ct and Pareto comparisons among alternative programs are 

s The result follows directly from the fact that a program (x*, y*, c*) is efficient if 
xtm=lAf-lct* = y,*. Proof of sufficiency as well as the basic steps in necessity is exactly 
the same as in [16]. To note the only difference, observe that if an efficient program has 
gp-lct* = y,* - 6 with 6 > 0, then y,’ = y,* , y.’ = &4-V,*, xl-, = Ay,’ 
for s > 2, cl’ = cl* + 6, c,’ = cs* for s > 2 constitute a feasible program. To check 
that the labor constraint is satisfied, yl = CzgA*--B~t* < y,* so that ay.’ < ay,* < I,. 
It follows that (c:) dominates (ct*). 
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made with the utility sequences ut(ct) is far more obviously related to the 
analysis of efficiency (see [17]). In fact, if there is just one good and the 
utility functions u1 are monotonically increasing, then the two problems are 
structurally identical since a consumption program Cc,) is efficient if and 
only if the corresponding utility sequence ut(ct) is Pareto optimal. With 
many goods, a result parallel to Theorem 5.1 also has been worked out 
by us to characterize long-run Pareto optimality in that framework. The 
distributional “paradoxes of infinity” involved in the Samuelsonian 
case of overlapping generations in which Pareto comparisons are made 
with lifetime utilities have been the object of much discussion and, there- 
fore, seems to be the more natural framework for a detailed study. The 
technology is that of the closed Dorfman-Samuelson-Solow model in 
which substitution conditions hold, and we indulge in differentiability 
assumptions to keep the exposition simple and to get the sharpest result. 
A more general analysis of Pareto optimality in infinite horizon economies 
is undoubtedly of importance, and will be the subject of a forthcoming 
paper. 

Va. The Model with Overlapping Generations 

To keep the notation simple, consumers are assumed to live for 2 
periods. Those born at the beginning of period t and dying at the end of 
period t + 1 constitute the tth generation. We have verifiedlO that what 
follows is valid if the consumers are assumed to live for ajinite number >2 
periods, and no change in the strategy of the proof is necessary (excepting 
introduction of some more involved notation). The preferences of all 
consumers of a particular generation are alike, and are conveniently 
represented by a real-valued concave strongly monotonic continuous 
utility function U#c, ‘c) on (I?), ; where jc = (jci) is the consumption 
vector of the tth generation in the jth period of its lifetime (j = 1,2). 
The utility function U, is continuously differentiable in the interior of 
(R2m)+ . The technology used in this section satisfies the assumptions listed 
in Example 3.2, and is described by the DOSS0 transformation locus F, 
so that we have 

5 = {(x, y): 0 < 4’“’ < F(yl,..., .P-? $3 x b O}. (5.1) 

We assume that Y satisfies (AS). 
The initial stocks x > 0 and the consumption of the “old” people in 

period 1, denoted by 2c1 are assumed to be given. A feasible program 

lo See the earlier version which appeared as Discussion Paper No. 85 circulated by 
the Department of Economics, Cornell University. 
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(u, x, y, c) from (x, c) consists of nonnegative sequences -(Us , (xt), (Y,+~), 
(ct+r)- satisfying 

x, = x, 2c1 = c; 

Yt+1 = Ct+1 + Xt+1 > et > Yt+J E r for all t > 0; WI 
C t+1 = 2ct+l + Qt+1 for all t > 0; 

and ut = U&z, , 2~t+l) is the sequence of utilities of different generations 
from the proposed schemes of allocation and distribution. 

We restrict our attention to regular interior programs (u, x, y, c) satis- 
fying xt > 0 and jet > 0 for all t. A feasible program (u*, x*, y*, c*) 
is short-run Pareto-optimal if there is no other feasible program (u, x, y, c) 
such that 

[X t+1 3 % ,..., Ut , (‘ct+Jl > [it*,, 3 %*v..r ut*, eL)l (5.3) 

for some finite t 3 1. It is long-run Pareto-optimal is there is no other 
feasible program (u, x, y, c) with U, > u +* for all t 2 1, strict inequality 
being valid for some t. 

It is immediate that a long-run Pareto-optimal program is necessarily 
short-run Pareto-optimal. However, the converse is not true-a program 
such that every finite segment is short-run Pareto-optimal need not be 
long-run Pareto-optimal. This justifies the above distinction. Our objective 
is to identify long-run Pareto-optimality with efficient, short-run Pareto- 
optimal programs, and thus to establish the link between efficiency and 
Pareto-optimality. 

THEOREM 5.1. A regular interior program (u*, x*, y*, c*) from (x, c) 
is long-run Pareto-optimal if and only if (a) it is short-run Pareto-optimal 
and (b) ejkient. 

Proof. Necessity being obvious, let us go directly to the nontrivial 
sufficiency part. The first step is to note that by using Kuhn-Tucker 
theorem, if a regular interior program (u*, x*, y*, c*) from (x, c) is short- 
run Pareto-optimal, there is a sequence (qt*,pt*) of price vectors with 
qt* > 0 (in R) and pt* > 0 (in R”) such that 

(i) qt*ut* - pt* ‘ct* - P&l ‘$1 > qt*UtcC, “c) - pt* lc - P&l 2c 

for all (lc, 2c) 2 0 and all t 3 1, 
(5.4) 

(4 ~t*~t* - pt*-,.& >, pt *y - pt*-.1x 

for all (x, y) E F and t > 1. 
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Actually, by exploiting the differentiability assumption, the prices 
in Eq. (5.4) can simply be defined as: 

for 

P? = aF/ax,i (i = I,..., m); 

pl*” = -aF/ayli (i = I,.... m - 1); pc’” = 1 

t .- 2, *WI pt = l/n*, *i pt = -aF/8y&rt (i = l,..., III - I), 
(5.5) 

where 

q”* = c/l* = 1 and 9,* = wwcwt for t > 2. 

It is understood that all the derivatives in Eq. (5.5) are computed at 
(u*, x*, y*, c*). The computational details leading to Eqs. (5.4) and (5.5) 
are tedious but straightforward, and are omitted.ll 

I1 The problem is to maximize F(x*,: I + c:+~ ,..., x”,;: + cy;:; xr) subject to 

ut(‘ct , Q-t+& 2 ut* , 

‘CT+1 2 ‘++I, 

among the set of feasible programs from x. Set up the Lagrangean 

To check the constraint qualification, we construct a feasible program from x, which 
satisfies all the constraints with strict inequality. Let 

K = yx [xl”“, .I$$], i = l,..., rn, 

k = $n [xt*” , yt*;;l, t = O,..., T. 

By assumption that the program (u*. x*, .v*, c*) is regular interior, we know that 
k > 0. 

For t 3 0 < t < T, since from x**, output VT+;, is producible, so the output &+r 
given by [$+, ,...,jJll;,‘] = (~$2~ ,..., vt,“;‘) and 0 < $y+1 < ~$b,“, is also producible 
[by the derivative conditions on F(e)]. Also y”t+l > 0 is producible from f, , given by 
[@ ,..., x”y-‘1 = [XT’ ,..., XT”‘] and .W = XT” - et where 0 < et < k/2. By taking a 
suitable convex combination (0 < A, < l), from I, = [e,..., XT”‘-‘, XT”’ - &r,], we 
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Suppose that a regular interior program (u*, x*, y*, c*) is short-run 
optimal and efficient, but is not long-run optimal. There there is some 
program (u”, 8,3, F), such that i& 3 u t* for all t > 1, strict inequality 
being vahd for at least one f = f. Let iit - ur* = y’ > 0. Then, by 
Eq. (5.4) we have for all T > f 

G P;rlX;rl + P;rlCr*il . (5.6) 

Since CTzIpt*ct* < p,,*x (by Eq. (2.7)) there is Tsuch that for all T> T, 

pi+&+, < qi*y’/4. Note that due to the differentiability assumptions, 
the prices (pt*) defined in Eq. (5.5) are the unique competitive prices 
associated with the program (u*, x*, y*, c*). Hence, by Theorem 2.1, 
the transversality condition Eq. (2.6) must necessarily be satisfied at 
these prices, i.e., lim,,, pt*xt* = 0. Hence, there is T* such that 

can produce rt+, given by [yi+, ,..., =jy+;:;‘] = [JJ::~ + ‘I:+~, ~$3”;’ + $-;‘I, where 
?1+1 ) ’ 0 for all i and FE”,, > 0. Let 8, = Atct and 6 = min, 6,. 

Since F,, is continuous on [k/2, K], so there exists M> 0, such that F,,,, c; M, for 
k > (xi, yi) > k/2 for all i. 

Now, let p0 = 0, pLt = min [8/(2M)r+‘-“, I], t = I,..., T + 1, and construct the 
required program (u, X, y, c) as follows. x0 = x; and for I = 0 ,..., T, 

SC 
fil 

z pc** 
t+* ‘...’ 

*C*m 1. 
t+* 

To check feasibility note that 

(a) (x I+19 Yt+1. %+I 1 Q-t+*) > 0, t = 0 )..., T, 

(b) Y,,, = xt+, + ct+, ; ct+, = 'ct+, + %t+, ; I = o,..., T, 

cc> h-t, Yt+d E y f = 0 ,..., T. 

To see this, note that since p’l Q 6 < 6, = &et, so F(yi+, ,...,yy+;“, xtm) > 0, and 
F(Yt+, ,...,yY+>‘, xl”) - F(y$& ,...,yy. xt”) = Pch(-2pJ > --S(2M)pt!(2M)~+1-t > 
-CLt+1. 

' . . Ftit,, ,..., v'l;;' , x;"? > F(Y::, , . . . . Y:,“;’ , $7 - /Q+I = v:,"l - P'~+I = Y~+I . -1-0 

check that the constraints are satisfied with inequality note that (i) by the derivative 
conditions on Cl,(.), z = I,..., T, U,(lc* , “c~+*) > ut* , and (ii) lcrtl > ‘cgI 1 . 
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pF+lxf+l < qi*y’/4 for all t >, T. Thus, for T 2 max(f, T*, T) we have 
qi*y’ < qi*y’/2, a contradiction. Q.E.D. 

Remark. The assumptions on F rule out the cases in which the deri- 
vatives becomes infinite at zero values of some input or output. In order 
to allow for such situations, we can require the derivative conditions to 
hold only at (?I,..., ym--l, x) > 0 and appeal to Section III. 
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